
Proposed disposition for date problems – DRAFT 2

Antonis Christofides, National Technical University of Athens

4 February 2008

This is work in progress. We are aware that the specification for several spreadsheet
functions still needs modification, and that some of the modifications already made need
some more work, particularly in error conditions. While we are going to finish this work,
its spirit is already clear and we present the part done so far.

1.Introduction

This proposal deals with comments AU-0016, BR-0046, CA-0044, CA-0071, CH-0006,
CH-0007, CH-0017, CL-0013, CL-0015, CL-0147, CL-00172, CO-0035, CO-0154,
CO-0155, CO-0156, CZ-0009, DE-0030, DE-0031, DE-0032, DE-0072, DE-0073, DK-0033,
DK-0136, DK-0137, DK-0153, FI-0013, FR-0182, FR-0183, FR-0351, FR-0352, GB-0300,
GB-0301, GB-0304, GB-0305, GB-0363, GB-0364, GH-0002, GR-0003, GR-0004,
GR-0005, GR-0006, GR-0007, GR-0008, IE-0002, IN-0007, IN-0057, IN-0058, IN-0061,
IN-0062, IN-0080, IR-0001, IR-0002, KE-0054, KE-0055, MX-0005, PE-0002, PE-0003,
PH-0005, PT-0085, SG-0002, US-0130, US-0131, US-0134, UY-0003, VE-0011, VE-0060,
ZA-0014.

Regarding its treatment of dates, the Ecma 376 specification is inconsistent with ISO
8601, specifically with respect to dates before 1900, and with its treatment of 1900 as a
leap year. Ecma's proposed disposition does address these problems, but it does not
address comment GR-0008 and similar comments submitted by other countries, which
mentions that “Having two different date systems with different base dates side-by-side
in the same standard document format makes no sense. Rather, it is appropriate to fix a
single base date. Applications which use a different base date can convert from the date
representation used in the standard document format to the application's preferred date
representation, and vice versa”. On the contrary, Ecma's proposed disposition has
complicated the problem, because it has been proposed that dates be stored in one of
four, rather than two, distinct formats, keeping the old formats for the purpose of
compatibility with previous functionality.

We propose an alternative disposition which is much simpler, adequately resolves all
related comments including GR-0008, and is also able to reproduce the 1900 bug
whenever required, thus also preserving compatibility with previous functionality.

2.Problem description and overview of the solution

The entire problem stems from the fact that legacy applications, namely Microsoft Excel,
which in turn reproduces behaviour from Lotus 1-2-3, have no notion of timestamps and
intervals as separate data types, and merely store them as real numbers. Excel has no
underlying understanding of a date; to Excel, a date is merely a way of displaying a real
number.

Despite the fact that, after several decades of usage, users now find it natural, it is
important to understand that a timestamp is not a real number, and attempting to make
operations such as adding 3.14 to the timestamp of 2008-02-03T12:31 makes no sense.
You can add 3.14 days, or 3.14 minutes, or 3.14 years, or any kind of duration, but you
can't add a pure real number to a timestamp any more than you can add an apple to an
orange.

Therefore, the correct way to handle timestamps and intervals is for the spreadsheet to
inherently support them as distinct data types. However, converting legacy spreadsheets

1

poses a problem: whenever the converter encounters a real number, it does not always
know whether a real number per se is intended, or a date.

Ecma has proposed that new spreadsheets also store timestamps as real numbers.
Although this achieves compatible conversion from legacy spreadsheets, it perpetuates
the problem. Rather than condemn us to carry the errors of the past for decades into the
future, it is better to do a little more effort to correct them now. We proceed to propose a
way, which actually greatly simplifies Ecma-376.

The way to address the problem is similar to what has been done in OpenOffice and
Open Document Format (ODF). ODF dictates that timestamps are stored as timestamps,
leaving it to the application to handle legacy conversions. While OpenOffice Calc
apparently treats timestamps in the same way as Microsoft Excel, in fact it includes
underlying conversions so that it properly stores timestamps as required by ODF.

Similarly, our proposal is that Ecma-376 store timestamps and intervals in ISO 8601
format, including recommendations that applications automatically treat them as
numbers whenever required for compatibility reasons. Applications may work in
compatibility mode, where such automatic treating of a date as a real number is
possible, but should warn users against compatibility mode and prefer strict mode,
where an error will occur in such cases.

3.Specific changes to Ecma-376

Part 4, §3.17.4, page 2,522, line 5:

3.17.4 Dates and Times

Each unique instant in SpreadsheetML time is represented as a distinct non-negative
numeric serial value, which is made up of an integer date component and a fractional
time component. As dates and times are numeric values, they can take part in arithmetic
operations.

Numerous functions take as arguments one or more serial values or strings representing
dates and/or times. Functions that care only about the date shall ignore any time
information that is provided. Functions that care only about the time shall ignore any
date information that is provided.

3.17.4.1 Date Representation

Going forward in time, the date component of a serial value increases by 1 each day.

There are two different bases for serial values:

• In the 1900 date base system, the lower limit is January 1, 1900, which has serial
value 1. The upper-limit is December 31, 9999, which has serial value 2,958,465.

• In the 1904 date base system, the lower limit is January 1, 1904, which has serial
value 0. The upper-limit is December 31, 9999, which has serial value 2,957,003.

A serial value outside of the range for its date base system is ill-formed.

As to which date base system an implementation uses by default or whether it allows its
users to switch between date base systems, is unspecified. See §3.17.6.7 for XML-
related details. [Note: As the XML allows either date base system to be used, an
implementation must be able to deal with both systems. end note]

For legacy reasons, an implementation using the 1900 date base system shall treat 1900
as though it was a leap year. [Note: That is, serial value 59 corresponds to February 28,

2

and serial value 61 corresponds to March 1, the next day, allowing the (non-existent)
date February 29 to have the serial value 60. end note] A consequence of this is that for
dates between January 1 and February 28, WEEKDAY shall return a value for the day
immediately prior to the correct day, so that the (non-existent) date February 29 has a
day-of-the-week that immediately follows that of February 28, and immediately precedes
that of March 1.

[Example: For the 1900 date base system:

DATEVALUE("01-Jan-1900") results in the serial value 1.0000000...
DATEVALUE("03-Feb-1910") results in the serial value 3687.0000000...
DATEVALUE("01-Feb-2006") results in the serial value 38749.0000000...
DATEVALUE("31-Dec-9999") results in the serial value 2958465.0000000...

For the 1904 date base system:

DATEVALUE("01-Jan-1904") results in the serial value 0.0000000...
DATEVALUE("03-Feb-1910") results in the serial value 2225.0000000...
DATEVALUE("01-Feb-2006") results in the serial value 37287.0000000...
DATEVALUE("31-Dec-9999") results in the serial value 2957003.0000000...

end example]

3.17.4.2 Time Representation

The time component of a serial value ranges in value from 0--0.99999999, and
represents times from 0:00:00 (12:00:00 AM) to 23:59:59 (11:59:59 P.M.), respectively.

Going forward in time, the time component of a serial value increases by 1/86,400 each
second. [Note: As such, the time 12:00 has a serial value time component of 0.5. end
note]

[Example:

TIMEVALUE("00:00:00") results in the serial value 0.0000000...
TIMEVALUE("00:00:01") results in the serial value 0.0000115...
TIMEVALUE("10:05:54") results in the serial value 0.4207639...
TIMEVALUE("12:00:00") results in the serial value 0.5000000...
TIMEVALUE("23:59:59") results in the serial value 0.9999884...

end example]

3.17.4.3 Combined Date and Time Representation

Any date component can be added to any time component to produce a serial value for
that date/time combination.

[Example: For the 1900 date base system:

DATE(1910,2,3)+TIME(10,5,54) results in the serial value 3687.4207639...
DATE(1900,1,1)+TIME(12,0,0) results in the serial value 1.5000000...
DATE(9999,12,31)+TIME(23,59,59) results in the serial value 2958465.9999884...

For the 1904 date base system:

DATE(1910,2,3)+TIME(10,5,54) results in the serial value 2225.4207639...
DATE(1904,1,1)+TIME(12,0,0) results in the serial value 0.5000000...
DATE(9999,12,31)+TIME(23,59,59) results in the serial value 2957003.9999884...

3

end example]

3.17.4 Dates, Times and Durations

Each unique instant in SpreadsheetML time is represented in the format required by the
XSD dateTime data type. Each duration is represented in the format required by the
XSD duration data type.

For legacy reasons, the nonexistent date of 29 February 1900 is allowed, but should not
be used for new spreadsheets.

[Note:

Some legacy spreadsheet applications have been storing instants and intervals as real
numbers. Microsoft Excel and Lotus 1-2-3, in particular, have been storing instants as
the number of days since the beginning of 1900 or 1904, and intervals as a number of
days. In order to be compatible with legacy spreadsheets or familiar to users of legacy
applications, an application may work in a compatibility mode that automatically
converts timestamps and intervals to numbers when asked to add them to real numbers
or perform other operations that make sense with real number operands but not with
timestamps and intervals. However, applications should also have a strict mode of
operation that prohibits such legacy operations, and should discourage users from
working in compatibility mode.

The dateCompatibility attribute describes how dates are converted into numbers when
applications work in compatibility mode.

end note]

Part 4, §3.2.27, page 1,908, line 26:

• Properties: the workbook has several property collection that store basic
workbook settings, such as the date system to use, file protection settings,
calculation settings, and smart tag behaviors.

• Names: represent descriptive that represent cells, ranges of cells, formulas, or
constant values.

[Example:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <workbook
 xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/5/main"
 mlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships
 ">
 <fileVersion lastEdited="4" lowestEdited="4" rupBuild="4017"/>
 <workbookPr date1904="1" vbName="ThisWorkbook"
 defaultThemeVersion="123820"/>

Part 4, §3.2.28, page 1,911, line 1:

[Example:

 <workbookPr date1904="1" showObjects="none"
 saveExternalLinkValues="0"
 defaultThemeVersion="123820"/>
end example]

Part 4, §3.3, page 1,926, line 22:

Worksheet cells can contain text, numbers, dates/times/durations, and formulas.

4

Page 1,936, check for “date occurring”

Page 2,477 check for “textDates”

Part 4, §3.2.28, page 1,912:

Attributes Description

date1904 (Date
1904)

Specifies a boolean value that indicates whether the date systems
used in the workbook starts in 1904.

A value of on, 1, or true indicates the date system starts in 1904.

A value of off, 0, or false indicates the workbook uses the 1900 date
system, where 1/1/1900 is the first day in the system.

The default value for this attribute is false.

The possible values for this attribute are defined by the XML
Schema boolean datatype.

dateCompatibility
(Date operations
in compatibility
mode)

Specifies how timestamps and intervals are converted to real
numbers when working in date compatibility mode.

A value of 1900 indicates that if the consumer has a date
compatibility mode, it should enable it, and that when asked to
perform operations with timestamps and/or intervals that do not
make sense unless the timestamps and/or intervals are converted to
real numbers, then the consumer should attempt to convert intervals
to number of days and timestamps to number of days since
1899-12-31, making, in addition, the assumption that 1900 was a
leap year.

A value of 1904 indicates that if the consumer has a date
compatibility mode, it should enable it, and that when asked to
perform operations with timestamps and/or intervals that do not
make sense unless the timestamps and/or intervals are converted to
real numbers, then the consumer should attempt to convert intervals
to number of days and timestamps to number of days since
1903-12-31, making, in addition, the assumption that 1900 was a
leap year.

If the attribute is missing or is an empty string, the consumer should
disable the date compatibility mode. Consumers that do not have a
date compatibility mode shall ignore the attribute, but should warn
the user.

Part 4, §3.2.28, page 1,915, line 3:

The following XML Schema fragment defines the contents of this element:

<complexType name="CT_WorkbookPr">
 <attribute name="date1904" type="xsd:boolean" use="optional" default="false"/>
 <attribute name="dateCompatibility" type="xsd:string" use="optional" default=""/>
 <attribute name="showObjects" type="ST_Objects" use="optional" default="all"/>
 <attribute name="showBorderUnselectedTables" type="xsd:boolean" use="optional"
 default="true"/>
 <attribute name="filterPrivacy" type="xsd:boolean" use="optional" default="false"/>
 <attribute name="promptedSolutions" type="xsd:boolean" use="optional" default="false"/>

5

 <attribute name="showInkAnnotation" type="xsd:boolean" use="optional" default="true"/>
 <attribute name="backupFile" type="xsd:boolean" use="optional" default="false"/>
 <attribute name="saveExternalLinkValues" type="xsd:boolean" use="optional"
 default="true"/>
 <attribute name="updateLinks" type="ST_UpdateLinks" use="optional" default="userSet"/>
 <attribute name="codeName" type="xsd:string" use="optional"/>
 <attribute name="hidePivotFieldList" type="xsd:boolean" use="optional" default="false"/>
 <attribute name="showPivotChartFilter" type="xsd:boolean" default="false"/>
 <attribute name="allowRefreshQuery" type="xsd:boolean" use="optional" default="false"/>
 <attribute name="publishItems" type="xsd:boolean" use="optional" default="false"/>
 <attribute name="checkCompatibility" type="xsd:boolean" use="optional" default="false"/>
 <attribute name="autoCompressPictures" type="xsd:boolean" use="optional" default="true"/>
 <attribute name="refreshAllConnections" type="xsd:boolean" use="optional"
 default="false"/>
 <attribute name="defaultThemeVersion" type="xsd:unsignedInt" use="optional"/>
</complexType>

Part 4, §3.8.31, page 2,140, line 10:

To
display

As Use this
code

Years 19000000-9999 yyyy

Part 4, §3.8.31, page 2,140, line 12:

See §3.17.4.1 for special handling of certain days in the year 1900.

Part 4, §3.17.6.7, page 2,529, line 27:

A date and/or time shall be stored in XML as a string in ISO 8601 format.

3.17.6.7 Dates and Times

As a date and/or time is represented by a number, a date/time serial value shall be
stored in XML as the unformatted text form of that number, as accurately as possible.

The date base system is recorded in the Workbook part's XML by the presence or
absence of the date1904 attribute of the workbookPr element. A value of 1 for this
attribute indicates 1904. [Example:

 1900: <workbookPr showObjects="all"/>
 1904: <workbookPr date1904="1" showObjects="all"/>
end example]

3.17.6.7 Timestamps and durations

Timestamps and durations are stored in the format required by the XSD dateTime and
duration types.

Part 4, §3.17.7.2, page 2,534, line 6:

● issue, first-interest, or settlement is out of range for the current date base value,
#NUM! is returned

Part 4, §3.17.7.3, page 2,535, line 16:

● issue or settlement is out of range for the current date base value, #NUM! is
returned

6

Part 4, §3.17.7.7, page 2,539, line 5:

● date-purchased or first-period is out of range for the current date base value,
#NUM! is returned.

Part 4, §3.17.7.8, page 2,541, line 1:

● date-purchased or first-period is out of range for the current date base value,
#NUM! is returned.

Part 4, §3.17.7.57, page 2,583, line 6:

● settlement or maturity is out of range for the current date base value, #NUM! is
returned.

Part 4, §3.17.7.58, page 2,584, line 5:

● settlement or maturity is out of range for the current date base value, #NUM! is
returned.

Part 4, §3.17.7.59, page 2,586, line 6:

● settlement or maturity is out of range for the current date base value, #NUM! is
returned.

Part 4, §3.17.7.60, page 2,586, line 6:

● settlement or maturity is out of range for the current date base value, #NUM! is
returned.

Part 4, §3.17.7.61, page 2,587, line 7:

● settlement or maturity is out of range for the current date base value, #NUM! is
returned.

Part 4, §3.17.7.62, page 2,588, line 6:

● settlement or maturity is out of range for the current date base value, #NUM! is
returned.

Part 4, §3.17.7.74, page 2,600, line 11:

3.17.7.74 DATE

Syntax:

 DATE (year , month , day [, add1900])

Description: Computes the serial value for the given date Constructs a timestamp.

Arguments:

Name Type Description

year number A year, truncated to integer, that together with month number and
day specifies the date value whose serial value is to be computed

7

Name Type Description

to be constructed.

For the 1900 date base system:

● If year is in the range 0–1899, inclusive, the year shall be
interpreted as year + 1900.

● If year is in the range 1900–9999, inclusive, the year shall
be interpreted as year.

For the 1904 date base system:

● If year is in the range 4–1899, inclusive, the year shall be
interpreted as year + 1900.

● If year is in the range 1904–9999, inclusive, the year shall
be interpreted as year.

month number A month, truncated to integer, that together with year number and
day specifies the date whose serial value is to be computed to be
constructed. month shall be interpreted as the number of months
relative to the final month of the year prior to the specified year.

If month is in the range 1–12, the month shall be interpreted as
month. If month is less than 1 or greater than 12, the month shall
be interpreted as the normalized value (see below) of month, and
the year shall be adjusted accordingly.

day number A day, truncated to integer, that together with month and number
year specifies the date whose serial value is to be computed to be
constructed. day shall be interpreted as the number of days
relative to the last day of the month (and its associated year) prior
to the month (and its associated year) as determined from month
and year (see below).

If day is in the allowable range of days for the month, the day shall
be interpreted as day. If day is less than 1 or greater than the
number of days in the given month, the day shall be interpreted as
the normalized value (see below) of day, and the year and month
shall be adjusted

add190
0

boolean If true, it specifies that the year is to be interpreted as year +1900
if year is in less than 1900, and as year if it is greater than or
equal to 1900. The default value for this parameter is false.

The value of month or day in a year-month-day argument triplet can be out of range.
month is simply an instance of counting a given number of months, minus one, relative
to January of the year specified, using the Gregorian calendar [ISO 8601]. This calendar
defines that there are 12 months in a year, and that when counting forward, the month
following December of one year is January of the following year, and when counting
backward, the month preceding January of one year is December of the previous year.
Likewise, day is simply an instance of counting a given number of days, minus one,
relative to the first day of the adjusted month, using the Gregorian calendar. This
calendar defines the number of days in each month, and that when counting forward,
the day following the final day of one month is the first day of the following month, and
when counting backward, the day preceding the first day of one month is the final day of

8

the previous month. [Example : The year-month-day argument triplets (2007,12,32),
(2007,13,1), and (2008,1,1) all result in the same date. end example]

Return Type and Value: number – The serial value for the given date. dateTime – The
timestamp that corresponds to the specified parameters.

If year is less than 0 or is greater than or equal to 10000, #NUM! is returned.

When the dateCompatibility attribute has a value of 1900, a consumer may consider
1900 to be a leap year. In such a case, DATE(1900, 2, 29) will return 1900-02-29, rather
than the correct value of 1900-03-01.

However, if

● year is less than 0 or is greater-than or equal-to 10000, and the 1900 date base
system is being used, #NUM! is returned.

● year is less than 4, is greater-than or equal-to 10000, is in the range 1900–1903,
inclusive, and the 1904 date base system is being used, #NUM! is returned.

[Example: For the 1900 date base system:

DATE(0,1,1) results in a serial value of 1
DATE(1899,1,1) results in a serial value of 693598
DATE(1900,1,1) results in a serial value of 1
DATE(9999,12,31) results in a serial value of 2958465

For the 1904 date base system:

DATE(4,1,1) results in a serial value of 0
DATE(1899,1,1) results in a serial value of 692136
DATE(1904,1,1) results in a serial value of 0
DATE(9999,12,31) results in a serial value of 2957003

end example]

Part 4, §3.17.7.75, page 2,601, line 29:

3.17.7.75 DATEDIF

Syntax:

DATEDIF (start-date , end-date [, unit])

Description: Calculates the number of days, months, or years difference between two
dates.

Arguments:

Name Type Description

start-date dateTime
number

The first date in the period, truncated to integer.

end-date dateTime
number The last date in the period, truncated to integer.

9

Name Type Description

unit text

The count type of result to be returned. If omitted, returns the
difference as a XSD duration. Otherwise, returns a number
that depends on unit , as follows:

Value Day Count Basis

"Y" The number of complete years in the period.

"M" The number of complete months in the period.

"D" The number of days in the period.

"MD" The difference between the days in start-date and
end-date. The months and years of the dates are
ignored.

"YM" The difference between the months in start-date and
end-date. The days and years of the dates are
ignored.

"YD" The difference between the days of start-date and
end-date. The years of the dates are ignored.

Return Type and Value: number or duration -- The number of days, months, or years
between two dates, depending on the value of unit, or the XSD duration between the two
dates, if unit is omitted .

However, if

• start-date or end-date is out of range for the current date base value, #NUM! is
returned.

• start-date ≥ end-date #NUM! is returned.
• unit is any value other than those shown in the table above, #NUM! is returned.

[Example:

DATEDIF(DATE(2001,1,1),DATE(2003,1,1),"Y") results in 2 complete years
DATEDIF(DATE(2001,6,1),DATE(2002,8,15),"D") results in 440 days
DATEDIF(DATE(2001,6,1),DATE(2002,8,15),"YD") results in 75 days
DATEDIF(DATE(2001,6,1),DATE(2002,8,15),"MD") results in 14 days

end example]

10

Part 4, §3.17.7.75, page 2,601, line 29:

3.17.7.76 DATEVALUE

Syntax:

DATEVALUE (date-time-string)

Description: Determines Computes the serial value of the date and/or time represented
by a stringthe string date-time-string, taking into account the current date base value.

Arguments:

Name Type Description

date-
time-
string

text

The date and/or time whose serial value date is to be computed.
date-time-string can have any valid date and/or time format. If the
year portion of date-time-string is omitted, the current year is
used. Any time information in date-time-string shall be ignored.

Return Type and Value: number dateTime -- The serial value of the date and/or time
represented by the string date-time-string.

However, if

• date-time-string is out of range for the current date base value, #VALUE! is
returned.

• date-time-string does not represent a date, #VALUE! is returned.

[Example: When the current year is 2006,

DATEVALUE("2/1/2006")
DATEVALUE("01-Feb-2006 10:06 AM")
DATEVALUE("2006/2/1")
DATEVALUE("2006-2-1")
DATEVALUE("1-Feb")

all result in 2006-02-0138749 for the 1900 date base system, or 37287 for the 1904 date
base system. end example]

Part 4, §3.17.7.78, page 2,605, line 11:

3.17.7.78 DAY

Syntax:

DAY (date-value)

Description: Computes the numeric Gregorian day for the date and/or time having the
given date-value, taking into account the current date base value.

Arguments:

11

Name Type Description

date-
value

number

dateTime,
text

The date and/or time whose day is to be computed. That date
and/or time shall be expressed either as a serial dateTime
value, in which case, its fractional part is ignored, or as a
string-constant having any valid date and/or time format., in
which case, aAny time information shall be ignored.

Return Type and Value: number -- The Gregorian day for the date and/or time having
the given date-value. The returned value shall be in the range 1--31.

However, if date-value is out of range for the current date base value, #NUM! is
returned.

[Example:

DAY(DATE(2006,1,2)) results in 2
DAY(DATE(2006,0,2)) results in 31
DAY("2006/1/2 10:45 AM") results in 2
DAY(30000) results in 18 for the 1900 date base system, or 19 for the 1904 date base
system

end example]

Part 4, §3.17.7.79, page 2,606, line 16:

3.17.7.79 DAYS360

Syntax:

DAYS360 (start-date , end-date [, method-flag])

Description: Computes the signed number of days between two dates based on a 360-
day year (twelve 30-day months).

Arguments:

Name Type Description

start-
date

dateTime
number

start-date and end-date are the dates for which the difference
is to be computed. start-date can be earlier than, the same as,
or later than end-date.

start-
date

dateTime
number

method-
flag logical Specifies whether to use the U.S. or European method in the

calculation, as follows:

12

Value Meaning

FALSE or
omitted

U.S. (NASD) method: If the start-date is the 31st
day of a month, it is changed to the 30th day of
that same month. If the end-date is the 31st day
of a month and the start-date is earlier than the
30th day of a month, the end-date is changed to
the 1st day of the following month; otherwise the
end-date is changed to the 30th day of the same
month.

TRUE
European method: start-dates and end-dates that
occur on the 31st day of a month are changed to
the 30th day of the same month.

Return Type and Value: number -- The signed number of days between two dates
based on a 360-day year (12 30-day months). If start-date is later than end-date, the
return value shall be negative, and the magnitude shall be the difference in days.

However, if start-date or end-date is out of range for the current date base value,
#NUM! is returned.

[Example:

DAYS360(DATE(2002,2,3),DATE(2005,5,31)) results in 1198
DAYS360(DATE(2005,5,31),DATE(2002,2,3)) results in -1197
DAYS360(DATE(2002,2,3),DATE(2005,5,31),FALSE) results in 1198
DAYS360(DATE(2002,2,3),DATE(2005,5,31),TRUE) results in 1197

|end example]

Part 4, §3.17.7.91, page 2,617, line 5:

● settlement or maturity is out of range for the current date base value, #NUM! is
returned.

Part 4, §3.17.7.101, page 2,624, line 5:

● settlement or maturity is out of range for the current date base value, #NUM! is
returned.

To be continued

This is work in progress. We are aware that the specification for several spreadsheet
functions still needs modification, and that some of the modifications already made need
some more work, particularly in error conditions. While we are going to finish this work,
its spirit is already clear and we have presented the part done so far.

13

	Part 4, §3.17.4, page 2,522, line 5:
	Part 4, §3.2.27, page 1,908, line 26:
	Part 4, §3.2.28, page 1,911, line 1:
	Part 4, §3.3, page 1,926, line 22:
	Page 1,936, check for “date occurring”
	Page 2,477 check for “textDates”
	Part 4, §3.2.28, page 1,912:
	Part 4, §3.2.28, page 1,915, line 3:
	Part 4, §3.8.31, page 2,140, line 10:
	Part 4, §3.8.31, page 2,140, line 12:
	Part 4, §3.17.6.7, page 2,529, line 27:
	Part 4, §3.17.7.2, page 2,534, line 6:
	Part 4, §3.17.7.3, page 2,535, line 16:
	Part 4, §3.17.7.7, page 2,539, line 5:
	Part 4, §3.17.7.8, page 2,541, line 1:
	Part 4, §3.17.7.57, page 2,583, line 6:
	Part 4, §3.17.7.58, page 2,584, line 5:
	Part 4, §3.17.7.59, page 2,586, line 6:
	Part 4, §3.17.7.60, page 2,586, line 6:
	Part 4, §3.17.7.61, page 2,587, line 7:
	Part 4, §3.17.7.62, page 2,588, line 6:
	Part 4, §3.17.7.74, page 2,600, line 11:
	Part 4, §3.17.7.75, page 2,601, line 29:
	Part 4, §3.17.7.75, page 2,601, line 29:
	Part 4, §3.17.7.78, page 2,605, line 11:
	Part 4, §3.17.7.79, page 2,606, line 16:
	Part 4, §3.17.7.91, page 2,617, line 5:
	Part 4, §3.17.7.101, page 2,624, line 5:

